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area under the disease progress curve (AUDPC), and root 
rot severity—were used. QTL were identified in more than 
one of the disease assessment criteria, mainly associated 
with lines in the most resistant categories. Five QTL (qRfs4, 
qRfs5, qRfs7, qRfs12, and Rfs16) were associated with at 
least one of the disease assessments across multiple popula-
tions. Of the five, qRfs4 was associated with DI, AUDPC, 
and root rot severity, and Rfs16 with AUDPC and root rot 
severity. The findings suggest it may be possible for plant 
breeders to focus on stacking a subset of the previously 
identified QTL to improve resistance to SDS in soybean.

Introduction

Sudden death syndrome (SDS) of soybean [Glycine max 
(L.) Merrill) is caused by the soilborne fungus Fusarium 
virguliforme (formerly Fusarium solani f. sp. glycines) 
(Aoki et al. 2003; Roy 1997). The pathogen infects soy-
bean roots causing a light-brown to black discoloration, 
leading to reductions in root mass and root nodules (Rupe 
1989; Stephens et al. 1993). Above-ground symptoms of 
foliar chlorosis and necrosis result from the translocation of 
toxins released by the pathogen, and can cause premature 
defoliation and pod abortion (Jin et al. 1996; Rupe 1989).

SDS reduces yield in most of the major soybean produc-
ing countries (Wrather et al. 2010). In the United States it 
ranked second to fifth compared to all other soybean dis-
eases regarding estimated yield impact in the Midwestern 
soybean producing region from 1996 to 2007, leading to 
estimated average losses of $190 million a year (Roy et al. 
1997; Wrather and Koenning 2009; Wrather et al. 2010). In 
2010, SDS was severe in Iowa and yield losses were esti-
mated to exceed 20 % in some production fields (Robertson 
and Leandro 2010), with a yield loss estimate of 70 million 
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bushels for the US (Wrather and Koenning 2011). Disease 
management focuses on planting resistant cultivars and 
using cultural practices that may improve soil drainage and 
reduce soil compaction (Hershman et al. 1990; Roy et al. 
1997; Wrather et al. 1995).

Resistant cultivars are primarily identified through field 
screens planted on SDS-infested soils (Gibson et al. 1994). 
However, environmental factors such as temperature and 
moisture, play important roles in disease expression (de 
Farias Neto et al. 2006; Roy et al. 1997; Rupe et al. 1994), 
creating challenges in the field evaluation of cultivars (Njiti 
et al. 2001). As a means to overcome this limitation, and 
to increase breeding efficiency by allowing phenotypic 
selection of resistant plants during the winter, greenhouse 
screening methods have also been developed (de Farias 
Neto et al. 2008; Hashmi et al. 2005; Hartman et al. 1997; 
Njiti et al. 2001; Lightfoot et al. 2007). A modified green-
house protocol subjecting plants to higher disease pres-
sure than that in original methods has been developed by 
Luckew et al. (2012).

Molecular analysis in conjunction with greenhouse 
and field assays have been used as a means to determine 
quantitative trait loci (QTL) associated with resistance to 
SDS (Kazi et al. 2008). Currently, 14 QTL associated with 
SDS resistance have been confirmed in several recombi-
nant inbred line (RIL) populations (Chang et al. 1996; de 
Farias Neto et al. 2007; Hnetkovsky et al. 1996; Iqbal et al. 
2001; Kassem et al. 2007, 2012; Kazi et al. 2008; Lightfoot 
et al. 2005; Meksem et al. 1999; Njiti et al. 1997, 2002; 
Prabhu et al. 1999; Sanitchon et al. 2004; Yamanaka et al. 
2006). Research has shown these QTL may confer resist-
ance to foliar disease severity, root rot severity, or both 
(Kassem et al. 2012; Kazi et al. 2008; Njiti et al. 1998; 
Triwitayakorn et al. 2005). Two of the QTL are common 
across four populations, ‘Essex’ × ‘Forrest’ (EF), ‘Pyra-
mid’ × ‘Douglas’ (PD), ‘Flyer’ × ‘Hartwig’ (FH) and 
‘PI438489B’ × ‘Hamilton’; one on linkage group (LG) 
C2 and the other on LG G (Table 1). Two other QTL are 
common to RIL populations EF and FH, one on LG G and 
one on LG I (Table 1). The RIL populations PD, FH, and 
‘Ripley’ × ‘Spencer’ have one QTL in common on LG D2, 
and PD, FH, and ‘PI438489B’ × ‘Hamilton’ populations 
have a QTL in common on LG N (Table 1). The other QTL 
are unique to populations in which they were detected, 
and could be considered population-specific. Up to date, 
there is no published information on relative importance 
of the QTL compared to one another in conferring resist-
ance to SDS, even if they are introgressed in similar genetic 
backgrounds.

Since resistance is quantitative, breeding SDS-
resistant cultivars requires accumulation of multiple 
genes. With the present state of technology, it would 

be impractical for plant breeders to try to accumulate 
numerous QTL from different populations into a single 
genetic background. This stacking particularly would 
require unusually large population sizes that may not 
always be feasible to obtain and to manage in breeding 
(Prabhu et al. 1999). A relevant question is how many 
QTL and which ones may be needed to confer high levels 
of SDS resistance that may be necessary to protect yield. 
The objective of this study was to determine, for the 
control of SDS disease expression, the usefulness of the 
known QTL previously associated with SDS resistance in 
the field and detected in the three RIL populations of EF, 
FH, and PD.

Materials and methods

Plant material

Populations were developed with different combinations 
of RIL parents possessing 12 of the QTL previously iden-
tified (Chang et al. 1996; Hnetkovsky et al. 1996; Iqbal 
et al. 2001; Kassem et al. 2007; Kazi et al. 2007, 2008; 
Lightfoot et al. 2005; Meksem et al. 1999; Njiti et al. 
2002; Prabhu et al. 1999). Parents for crossing were identi-
fied from the RIL mapping populations of ‘Essex’ × ‘For-
rest’ (EF-23), ‘Pyramid’ × ‘Douglas’ (PD-98), and 
‘Flyer’ × ‘Hartwig’ (FH-13, FH-33, FH-35). Plant geno-
types used included the five parental lines (EF-23, PD-98, 
FH-13, FH-33, and FH-35), ‘Ripley’ (Cooper et al. 1990) 
as resistant control, ‘Spencer’ (Wilcox et al. 1989) as sus-
ceptible control, and 321 F2:3-derived lines (F2:3) devel-
oped from nine different crosses among RIL. Population 
identification, parentage and number of lines per popu-
lation are described in Table 2. Some of the populations 
were obtained by reciprocal crosses between the RIL par-
ents. The parental RIL had been genotyped at the Light-
foot lab and QTL molecular information was published 
and it is summarized in Table 3 (Njiti et al. 2002; Kassem 
et al. 2006; Kazi et al. 2008).

Populations were developed at the Iowa State University 
(ISU) research site located, at Isabela, Puerto Rico, Uni-
versity of Puerto Rico. F1 seed was obtained in November 
2006. The F1 plants were harvested individually, and iden-
tified even if morphological markers were available to con-
firm the hybrid nature of the crosses. The F1 plant identity 
was maintained throughout generation advances. F2:3 plants 
were individually harvested during April 2007. The F2:3 
lines were randomly selected among all lines available in 
each population, with seed numbers on an individual plant 
basis adequate to conducting several runs of the experiment 
with replications.
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Inoculum preparation

Fusarium virguliforme isolates Clinton1b and Scott 
obtained in 1996 from roots of SDS symptomatic plants 
from production fields in Clinton and Scott counties in 
Iowa, were used in the screening experiments. Isolates 
were grown on antibiotic-amended potato dextrose agar 
(PDA) (0.150 g L−1 of streptomycin sulfate, and chlo-
rtetracycline hydrochloride, 39 g Difco PDA per liter) for 
6 weeks under natural day length, and at room temperature 
(19–23 °C). Sterile white sorghum [Sorghum bicolor (L.) 
Moench] kernels (500 g) were placed in quart mason jars 
filled with water for 24 h. Water was drained and flasks 
were autoclaved for 1 h on two consecutive days. After 
cooling, sorghum kernels were inoculated with five mycelia 
plugs 7 mm in diameter of a single F. virguliforme culture. 
Jars were incubated at room temperature (21 ± 2 °C) for 

2 weeks, shaken daily by hand for 1 to 2 min to ensure uni-
form fungal growth. Jars were visually inspected to verify 
uniform fungal growth and emptied on racks in a fume 
hood for 24 h to allow infested sorghum kernels to dry. 
After drying, infested kernels each with a F. virguliforme 
isolate, were combined in equal parts into a single plastic 
biohazard bag. Isolates were combined in equal proportions 
as described by Sanogo et al. (2000). Inoculum was pre-
pared separately for each run.

Infested sorghum previously prepared in the lab follow-
ing the same techniques, had been quantified using qPCR 
using specific primers identified by Li et al. (2008) in 
the Hartman lab at the University of Illinois (Bowen and 
Bond, 2012). The batches ranged from 21.4 ng F. virguli-
forme DNA/mg sorghum to 31.1 ng DNA/mg sorghum (dry 
weight). The specific batch of infested sorghum used in the 
study was not quantified.

Table 1  Quantitative trait loci (QTL) for resistance to Fusarium virguliforme described by name of the QTL, simple sequence repeat (SSR) 
marker, linkage group (LG) in which QTL was assigned, primer sequences, and the articles that identified and characterized each QTL

QTL SSR LG Upper primer sequence 
(5′ → 3′)

Lower primer sequence  
(5′ → 3′)

Allele size  
(bp)

References

Rfs Sat_403 G GCGGCGTCATGT 
TAGTTGGAACC

GCGAGCCATTTTTCTCT 
TTTAGACAAT

127 Njiti et al. (1998); 
Meksem et al. (1999); 
Prabhu et al. (1999); 
Iqbal et al. (2001); 
Njiti et al. (2002); 
Triwitayakorn et al. 
(2005)

Rfs2 Satt309 G GCGCCTTCAAATTG-
GCGTCTT

GCGCCTTAAATAAAAC 
CCGAAACT

142 Meksem et al. (1999); 
Iqbal et al. (2001); 
Njiti et al. (2002); 
Triwitayakorn et al. 
(2005)

qRfs3 Satt163 G GCGGCACGAGA 
AAAGGAGAGAGAG

GCGGGGGAAAAACTAT-
GTTCT

231 Chang et al. (1996); 
Iqbal et al. (2001); 
Kazi et al. (2008)

qRfs4 Satt371 C2 TGCAAACTAACTG 
GATTCACTCA

GAGATCCCGAAATTT 
TAGTGTAACA

245 Hnetkovsky et al. 
(1996); Iqbal et al. 
(2001); Njiti et al. 
(2002); Kazi et al. 
(2008); Kassem et al. 
(2012)

qRfs5 Satt354 I GCGAAAATGGACA 
CCAAAAGTAGTTA

GCGATGCACATCAATTA 
GAATATACAA

248 Iqbal et al. (2001)

qRfs6 Satt80 N CCATAAAATAATAAAG 
GTCAAT

TAATCAGTGGAAAAAAAGT 
TAT

177 Chang et al. (1996); 
Njiti et al. (2002)

qRfs7 Sat_001 D2 GCGGATACGAC-
CAAAAATTGTT

GCGAACTGCGAAGATAC 
TACCC

214 de Farias Neto et al. 
(2007); Kazi et al. 
(2008)

qRfs11 Satt138 G GACATTTTTCCACG 
GATATTGAAT

AACGGGCGATTTATG 
GCTAT

294 Lightfoot et al. (2007)

qRfs12 Satt160 F TCCCACACAGTTTTCAT 
ATAATATA

CATCAAAAGTT 
TATAACGTGTAGAT

251 Kassem et al. (2006)

Rfs16 Satt353 H CATACACGCATTGC 
CTTTCCTGAA

GCGAATGGGAATGC 
CTTCTTATTCTA

169 Dr. Lightfoot, personal 
communication
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Greenhouse experiment

The 321 F2:3-derived lines, parents, the resistant control 
Ripley and the susceptible control Spencer were screened 
for foliar leaf scorch and root rot resistance to F. virguli-
forme at the ISU Plant Pathology Greenhouses, Ames, IA.

The infested sorghum inoculum was homogeneously 
mixed with pasteurized 2:1 sand: soil mixture at the ratio 
of 1 part inoculum to 20 parts sand/soil (v/v) following 
Luckew et al. (2012). This ratio uses more inoculum than 
what is used in other screening methods and what would 
be found naturally in the field (Luckew et al. 2012). The 

Table 2  ANOVA table of six populations and four disease assessment criteria: disease incidence (DI), foliar disease severity (DS), area under 
the disease progress curve (AUDPC), and root rot severity

a DI and Root rot severity data was only collect in two runs of the experiment

*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively

Main effect Disease assessment criteria

DI DS AUDPC Root rot

dfa MS df MS df MS dfa MS

Population 1, FH13 × EF23, 52 lines

 Run 1 0.736 2 34,452*** 2 2,863,402*** 1 30,685***

 Rep 3 0.158 3 5,179.8*** 3 263,607.3** 3 7,415.0***

 Run*Rep 3 0.934* 5 8,381.7*** 5 466,360.3*** 3 16,018***

 Genotype 51 0.290 51 690.19 51 53,548.49 51 839.24

 Error 305 0.259 423 634.95 424 49,916.93 304 655.00

Population 2, FH13 × PD98, 62 lines

 Run 1 8.794*** 2 59,407*** 2 6,029,312*** 1 90,339***

 Rep 3 0.297 3 2,759.9* 3 177,498.4* 3 5,140.1***

 Run*Rep 3 1.727*** 5 6,397.9*** 5 454,922.5*** 3 18,054***

 Genotype 61 0.152 61 943.62* 61 86,399.91* 61 830.09

 Error 388 0.157 538 588.30 537 61,282.19 388 618.09

Population 3, FH33 × EF23, 45 lines

 Run 1 6.923*** 2 40767*** 2 4,182,412*** 1 53,358***

 Rep 3 0.528* 3 738.98 3 144,273.7 3 3,986.9**

 Run*Rep 3 0.396 5 673.88 5 93,220.52 3 8,245.9***

 Genotype 43 0.152 44 465.69 44 40,226.83 43 662.92

 Error 271 0.170 343 578.67 343 65,369.22 270 578.16

Population 4, FH33 × PD98, 59 lines

 Run 1 11.01*** 2 45,258*** 2 3,470,430*** 1 56,847***

 Rep 3 0.397* 3 4,216.7*** 3 176,313.6* 3 7,805.2***

 Run*Rep 3 1.805*** 5 6,596.5*** 5 265,332.0*** 3 19,218***

 Genotype 58 0.103 58 623.15* 58 62,299.13 58 510.24

 Error 376 0.126 470 459.95 472 48,135.21 379 554.80

Population 5, PD98 × FH35, 38 lines

 Run 1 5.515*** 2 33539*** 2 1,985,523*** 1 19,969***

 Rep 3 0.067 3 2,472.4** 3 113,916.3 3 9,325.5***

 Run*Rep 3 1.028** 5 1,919.1* 5 96,552.26 3 6,650.4***

 Genotype 37 0.176 37 800.74 37 70,671.16 37 962.20

 Error 215 0.148 287 610.07 289 60,693.95 215 671.99

Population 6, PD98 × EF23, 65 lines

 Run 1 3.567*** 2 47,801*** 2 3,272,560*** 1 54,173***

 Rep 3 0.427* 3 2,905.3** 3 117,508.9 3 7,913.9***

 Run*Rep 3 3.027*** 5 8,354.1*** 5 417,585.5*** 3 18,283***

 Genotype 62 0.166 64 810.55 64 77,277.52 62 771.98

 Error 331 0.146 431 627.52 432 69,453.76 331 702.21
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high level of inoculum was used to overcome the QTL 
stacks present in the 321 lines. Sterile non-infested sor-
ghum mixed with pasteurized sand/soil at the same ratio as 
the infested sorghum, was used as negative control for the 
resistant and susceptible check cultivars.

A 240-ml Styrofoam cup with five seeds planted at 
a depth of 2 cm was considered a plot. There were four 
cups per soybean genotype, each considered a repli-
cation. The two checks were planted into sterile soil 
mixture and infested soil mixtures to verify contamina-
tion was not present. Cups were incubated in the green-
house at 23 ± 5 °C with a 16 h photoperiod. Plants were 
watered once daily to maintain soil moisture. Experi-
mental design was a randomized complete block design 
(RCBD) with genotypes as treatments and with four 
replications. The experiment was conducted three times 
(runs) planted on May 2010 (Run 1), December 2010 
(Run 2), and April 2011 (Run 3).

Disease assessment

SDS foliar leaf scorch symptoms were evaluated 21, 24, 
27, 30, 33, and 36 days after planting (dap). Foliar leaf 
scorch disease severity (DS) was scored as a percentage of 
leaf area showing typical SDS symptoms (Roy et al. 1997). 
Foliar disease incidence (DI) was calculated as number 
of plants per cup showing typical SDS foliar symptoms, 
divided by the total number of plants in each cup. Root rot 
was assessed at 36 dap and scored visually as the percent-
age of root area showing dark brown to black discoloration 
(Roy et al. 1997). Following the midpoint rule of Campbell 
and Madden (1990), the area under the disease progress 
curve (AUDPC) was calculated.

Molecular marker analysis

For all lines, and parents, DNA was isolated from leaf sam-
ples of 10 individual plants collected 36 dap, corresponding 
to soybean plant growth stage V3–V4 (Fehr and Caviness 
1977). Leaves of each of five plants were collected from 
two of the three runs.

DNA was isolated following a modification of the 
method described in the CIMMYT laboratory protocols 
manual, section entitled ‘Small scale extraction of high 
quality DNA’ (CIMMYT 2005). Leaves of each line were 
combined over the four replications, keeping runs separate, 
and were finely ground with mortar and pestle. The proce-
dure described by CIMMYT (2005) was followed.

The DNA pellet was resuspended in 100 μl of TE buffer. 
Simple sequence repeat (SSR) markers (Table 1) were used 
to test the isolated DNA for the known QTL. A step down 
polymerase chain reaction (PCR) was performed. An initial 
2 min at 94 °C was followed by five cycles of 94 °C for 
30 s, then 60 °C for 30 s with a step of −2 °C every cycle, 
and finished with 72 °C for 1 min. The last 35 cycles mim-
icked the first 5 cycles starting with 30 s at 94 °C followed 
with 50 °C for 30 s, then 72 °C for 45 s. After all cycles 
finished, the products were kept at 72 °C for 10 min fol-
lowed by 15 °C for 10 min. Products from the PCR were 
electrophoresed on 8 % (w/v) agarose gels for 3 h, visual-
ized by ethidium bromide fluorescence and scored for pres-
ence/absence of the corresponding marker allele associated 
with SDS resistance using the known base pair size of the 
marker.

Data analysis

For each population the three runs of the greenhouse exper-
iment were combined and analysis of variance was per-
formed using the PROC GLM statement in SAS version 
9.2 (SAS Institute 2008) on foliar DS and DI at 36 dap, 
root rot severity, and AUDPC. Main effects tested were run, 
replication, and genotype, and interactions, all considered 
random effects. Control genotypes were considered fixed 
effects.

Allele frequencies of the 10 QTL for which parents were 
polymorphic, were calculated within two defined groups 
or categories, the 10 % most resistant, 10 % least resistant 
for each population and the five parents. Allele frequencies 
were compared between groups to identify differences in 
frequencies for disease assessment criteria (Appendix 1–4).

The PROC GLM statement was used to perform con-
trast analyses of the 10 % most and the 10 % least resist-
ant categories for DS and root rot severity. A Spearman 
rank correlation was performed on all 321 lines for DI, 
DS, AUPDC and root rot using the PROC CORR state-
ment. A Pearson correlation was also performed on DI, 

Table 3  Presence (+) or absence (−) of the beneficial allele accord-
ing to SSR band sizes for 10 quantitative trait loci (QTL) associated 
with resistance to soybean sudden death syndrome (SDS) in the five 
RIL parents used to develop the 321 F2:3-derived lines screened for 
resistance to SDS in the greenhouse (16 h photoperiod at 23 ± 5 °C)

QTL Parent

E × F23 F × H13 P × D98 F × H33 F × H35

Rfs + – + – –

Rfs2 – + – + +
qRfs3 + + – – –

qRfs5 + – + – –

qRfs4 – + – + +
qRfs7 – + – + +
Rfs16 + + – + +
qRfs12 + – + – –

qRfs6 – + – + +
qRfs11 + – + – –
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DS, AUDPC, root rot, and the 10 QTL using the PROC 
CORR statement. PROC UNIVARIATE was run to obtain 
a Shapiro–Wilk test for normality of the curves for each of 
the disease assessment criteria, DI, DS, AUDPC, and root 
rot severity.

Results

The four disease assessment criteria, DI (Fig. 1a), DS 
(Fig. 1b), root rot severity (Fig. 1c), and the calculated 
AUDPC curve (Fig. 1d), had frequency distribution curves 
that approached normal uni-modal distributions. For each 
disease criteria there were four parental lines that had a 

calculated average over runs that approximated the gen-
eral combined average calculated for the 321 F2:3-derived 
lines (Fig. 1). Mean squares for run, replicate, and their 
interaction were significant (P < 0.05) in all populations for 
DS, AUDPC, and root rot severity, except for populations 
FH33 × EF23, PD98 × FH35 and PD98 × EF23 (Table 2). 
Mean squares of the interaction terms (genotype × run and 
genotype × rep) were non-significant in all populations.

Spearman rank correlations were calculated for all 321 
lines and populations among disease assessment criteria 
(Table 4). These correlations were significant (P < 0.0001), 
with r values ranging from 0.48 to 0.89 (Table 4). The 
highest correlation was obtained between AUDPC and DS 
recorded at 36 dap, r = 0.89.

Fig. 1  Distribution of 321 F2:3-derived soybean lines and the five 
parents averaged over three runs based on symptoms resulting from 
infection of Fusarium virguliforme a disease incidence (%), b foliar 
leaf scorch severity (%), c root rot severity (%), and d area under 

the disease progress curve. Plants were grown in the greenhouse at 
23 ± 5 °C with a 16 h photoperiod. The vertical arrows represent the 
position of the parents in each of the three histograms
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The Pearson correlation between the QTL and dis-
ease assessment criteria using only the 10 % most 
and 10 % least resistant showed population specific-
ity in their values (Tables 4, 5, 6). Half of the popula-
tions showed only one significant (P < 0.05) r value or 
none, while the other half of the populations had many 
significant relationships. One QTL, qRfs12, was associ-
ated (P < 0.05) with DS, root rot, and AUDPC in two 
populations, FH33 × PD98 and PD98 × FH35. Two 
QTL were associated (P < 0.05) with a disease assess-
ment criterion in two populations, in one population 
having a positive relationship and in the other a nega-
tive relationship. For root rot qRfs7 had a positive rela-
tionship in FH33 × EF23 and a negative relationship 
in FH13 × EF23. The second QTL to act similarly was 
qRfs4 with a positive relationship in PD98 × FH35 and 
a negative relationship in PD98 × EF23 for AUDPC. 
Many QTL showed (P < 0.05) correlations to other QTL 
(Tables 5, 6, 7).

Considering QTL and disease assessment over popu-
lations, significant differences (P < 0.0001) between 
the 10 % most resistant and 10 % least resistant groups 
were observed. For DI, QTL qRfs4 was present in the 
10 % most resistant group in five of the six populations 
(Table 8). The DI assessment also showed QTL Rfs and 
qRfs3 were present in four of the six populations in the 
10 % least resistant group. Focusing on DS, a different set 
of QTL common across the six populations was observed. 
QTL qRfs7 was identified in five of the populations in 
the 10 % most resistant group and qRfs11 in four popula-
tions in the 10 % least resistant category. Root rot severity 
had three common QTL across four populations, qRfs5, 
qRfs12, and qRf4. The 10 % most resistant groups had 
qRfs5 and qRfs12 present in five of the six populations, 
while qRfs4 was present in the 10 % least resistant group 
in four of the populations. Although AUDPC is related 
to DS, AUDPC showed a different set of QTL present 
across populations with qRfs4 and qRfs12 being common 
in the 10 % most resistant group in four populations as 
well as Rfs16 in five of the populations. AUDPC also had 
two QTL common across populations in the 10 % least 

resistant group: Rfs2 in four populations and qRfs11 in 
five populations.

Common QTL were also observed among disease 
assessment criteria (Table 8). One QTL, qRfs4, was present 
across three disease assessments; DI, AUDPC, and root 
rot severity, although not always present in the same most 
resistant/least resistant category of each of the three popu-
lations. The QTL was present in the 10 % most resistant 
group for DI and AUDPC, while for root rot severity, the 
common QTL was in the 10 % least resistant group. QTL 
qRfs11 was also common across two disease assessments, 
DS and AUDPC, present for both disease criteria in the 
10 % least resistant group. QTL qRfs11 had in general, a 
higher frequency in the 10 % least resistant group of root 
rot severity. The last QTL common across disease assess-
ment criteria was qRfs12 for AUDPC and root rot sever-
ity. For both criteria qRfs12 was in the 10 % most resist-
ant group. For DI and DS, qRfs12 was present in the 10 % 
most resistant group at a frequency higher than in the 10 % 
least resistant group.

Discussion

Using RILs obtained from the populations of Essex x For-
rest, Flyer x Hartwig, and Pyramid x Douglas, and mak-
ing crosses among them, new soybean populations were 
developed to conduct this study. The results from this 
study identified certain QTL showing association with 
SDS resistance under high disease pressure, over different 
populations and disease assessment criteria. QTL detected 
in comparisons of the most and least resistant categories 
were not always significant in all populations, suggesting 
a population background effect. Screening under high dis-
ease pressure allowed for discrimination of resistant QTL, 
providing indications on which and how many QTL might 
be important to consider in breeding.

The results indicated that of the 10 QTL for which 
the parental lines were polymorphic, five—qRfs4, qRfs5, 
qRfs7, qRfs12, and Rfs16—may have potentially greater 
effects on SDS resistance, particularly in the four dis-
ease assessment criteria (DI, DS, root rot severity and 
AUDPC). The QTL effects on disease resistance expres-
sion were evident when within population comparisons 
were done between the 10 % most and least resistant 
lines.

Five other QTL Rfs, Rfs2, qRfs3, qRfs4, and qRfs11, 
were observed in the 10 % least resistant category for at 
least one disease assessment criteria. The QTL were pre-
viously reported as associated with SDS resistance. Our 
observations do not fully contradict the reports, since 
genetic backgrounds used in this and previous studies were 
different. Different genetic backgrounds and possibly QTL 

Table 4  Spearman rank correlation of foliar disease incidence (DI) at 
36 dap, foliar leaf scorch disease severity (DS) at 36 dap, area under 
the disease progress curve (AUDPC), and root rot severity of soybean 
sudden death syndrome for 321 F2:3-derived lines screened in the 
greenhouse

DI DS AUDPC Root 
Rot

DI 0.74 0.64 0.48

DS 0.89 0.59

AUDPC 0.54
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interacting with them may explain the differential contribu-
tion of the QTL to the final expression of SDS resistance. 
An example of interaction between QTL and genetic back-
ground was reported for QTL Rfs2 (Afzal et al. 2012; Srour 
et al. 2012). The authors indicated that Rfs2 has pleiotropic 
effect under the presence of rhg1, one of the alleles confer-
ring resistance to soybean cyst nematode (SCN). One of the 
populations used in our study traces SCN resistance to PI 
88788, while the other two trace to the Peking source of 
resistance for SCN.

Another significant aspect of the study was to identify 
SDS-resistant QTL common across populations. Three 
QTL, qRfs4, qRfs11, and Rfs16, which were common to 
more than one disease assessment criteria, were also com-
mon across populations. Additionally, two of the QTL 
were also observed in the 10 % most resistant category—
qRfs4 and Rfs16. These results suggest the two QTL could 
be used by plant breeders as initial genes to improve SDS 
resistance. The QTL qRfs4 and Rfs16 both confer resist-
ance to foliar leaf scorch caused by the fungus and results 
also provided indications that Rfs16 appears to favor root 
rot resistance.

Our observations for Rfs16 indicate the QTL is asso-
ciated with foliar and root resistance in the populations. 
This is the first published result in which the association 
of Rfs16 with both DS at the leaves and root rot severity 
is reported. A QTL having SDS-resistant expression at the 
two plant levels has important implications for soybean 
breeding. On the basis of up to date observations it had 
been hypothesized that resistance to SDS in soybean may 
be governed by two different genetic systems, one acting 
at the foliar level, and the other at root level (Kazi et al. 
2008; Njiti et al. 1997; Triwitayakorn et al. 2005). Recently 
however, and confirming our observation for Rfs16, work 
in the Meksem lab has reported other QTL with significant 

association for resistance simultaneously expressed both at 
the foliar and root levels (Kassem et al. 2012).

In contrast to Rfs16, QTL qRfs4 was only associated 
with foliar resistance, which agrees with previous results 
of independent resistance mechanisms for foliar and root 
resistance (Kazi et al. 2008; Triwitayakorn et al. 2005). In 
our work, qRfs4 was observed in the 10 % least resistant 
category for root rot severity, although for foliar resistance 
(DI and AUDPC), the QTL was present in the 10 % most 
resistant category. In previous work, Iqbal et al. (2001) 
identified the QTL associated with resistance for DI, later 
Kazi et al. (2008) reported an association with the calcu-
lated DX resistance. It is important to mention that both 
disease assessment criteria, AUDPC and DX, are math-
ematically related since DS is part of the equation to cal-
culate AUDPC. This fact justifies the highly significant 
(P < 0.0001) correlation of r = 0.89 we observed in the 
study.

In this study, the association of qRfs5 with root rot sever-
ity is a novel result. Previously, Iqbal et al. (2001) reported 
qRfs5 was associated with resistance to SDS under the DI 
assessment criteria. The authors observed that in the pop-
ulation of Essex x Forrest, the QTL explained 11.5 % of 
the total variation for resistance. Our observations seem to 
indicate that the association reported by Iqbal et al. (2001) 
may be in reality a consequence of resistance QTL acting 
at root level.

The association between qRfs7 with DS observed is not 
a new observation. Kazi et al. (2008) previously reported 
the QTL explained 25 % of the variation in root rot sever-
ity, and also a weak association with DS. A partial explana-
tion for the differences between studies may be the higher 
disease pressure used in this study (Luckew et al. 2012). 
The disease protocol by Luckew et al. (2012) causes rotted 
roots even when foliar disease symptoms are not visible.

Table 8  Number of populations possessing each of the 10 quantitative trait loci (QTL) in either the 10 % most resistant or least resistant catego-
ries

There were six populations, FH13 × EF23, FH13 × PD98, FH33 × EF23, FH33 × PD98, PD98 × FH35, and PD98 × EF23 assessed by four 
disease assessment criteria, disease incidence (DI), foliar disease severity (DS) at 36 days after planting (dap), area under the disease progress 
curve (AUDPC), and root rot severity

Disease  
assessment 
criteria

Category QTL

Rfs Rfs2 qRfs3 qRfs4 qRfs5 qRfs6 qRfs7 qRfs11 qRfs12 Rfs16

DI Most Res. 1/6 2/6 1/6 5/6 2/6 1/6 3/6 3/6 3/6 3/6

Least Res. 4/6 2/6 4/6 1/6 1/6 3/6 0/6 3/6 3/6 1/6

DS Most Res. 3/6 2/6 2/6 3/6 1/6 1/6 5/6 2/6 3/6 3/6

Least Res. 2/6 2/6 2/6 3/6 1/6 1/6 0/6 4/6 1/6 2/6

AUDPC Most Res. 2/6 1/6 1/6 4/6 1/6 1/6 2/6 1/6 5/6 4/6

Least Res. 3/6 4/6 2/6 2/6 2/6 2/6 0/6 5/6 1/6 2/6

Root rot  
severity

Most Res. 3/6 1/6 2/6 1/6 5/6 1/6 3/6 2/6 1/6 5/6

Least Res. 1/6 2/6 2/6 4/6 0/6 3/6 3/6 3/6 1/6 1/6
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It is important to mention that results of our study be 
interpreted with some measure of caution. Several limita-
tions may be identified, one is that results were based solely 
on greenhouse screening tests, even though the screen-
ing protocol used (Luckew et al. 2012), was purposely 
designed to create increased disease pressure as compared 
to classical greenhouse screening methods (Hartman et al. 
1997; X.B. Yang, Plant Pathology Dept., ISU, personal 
communication; Patent #7,288,386 issued to Lightfoot 
et al. 2007). In the study, we did not conduct field screen-
ing tests and this is an important limitation to confirm and 
validate mode of action of QTL, particularly when the QTL 
tested were identified in previous research through field 
screens. Counteracting this limitation, however, Luckew 
et al. (2012) reported in previous work that genotypic rank-
ings between greenhouse and field screenings can also be 
highly correlated. Another limitation refers to the lack of 
genetic variance component estimates, since the study was 
not planned with that objective in mind. This precludes 
consideration of QTL effects associated with components 
of the genetic variance, and interactions among them, such 
as additive x additive, and other higher interactions. It is 
important to note, however, that this may not be relevantly 
important, since contradictory results on higher order 
genetic interactions have been reported (Iqbal et al. 2001; 
Njiti et al. 2002).

Our results suggest it may be possible for plant breed-
ers to focus on stacking fewer QTL in breeding lines to 
improve resistance to SDS in soybean, than those identified 
associated with resistance. Research is in progress to con-
duct line evaluations in field test conditions, both on SDS-
infested and non-infested soil conditions to obtain SDS 
disease symptoms and yield estimates. Reports have indi-
cated that foliar symptoms are strongly and clearly associ-
ated with seed yield reduction (Gibson et al. 1994; Yuan 
et al. 2002; Kazi et al. 2008), similarly as root rot symp-
toms (Njiti et al. 1997; Kazi et al. 2007, 2008). The work 
in progress may contribute to establish potential associa-
tions between important resistance QTL and yield expres-
sion, increasing efficiency of breeding programs to improve 
resistance to SDS.
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